Bio gold rush could pay off for enterprise IT

By , IDG News Service |  Business

Another area where life sciences will increasingly influence Compaq's foundation technology is in the area of computing architectures. Rabe characterized the last three or four years of life sciences computation as requiring integer rather than floating-point compute power, as the work has involved doing comparisons of character strings. Such a task lends itself to being broken down and done on clusters, he said. However, "In the next few years, they're going to be moving from character string work to looking at chemical structures of compounds such as proteins, and in the longer term, structures of larger systems such as tissues and organs." Demands for better floating point performance will drive more capable interconnects between processors, and processors that are themselves more floating-point capable, Rabe said, adding that "we are actively working with government and life sciences customers to try to define new computing architectures."

The demands of working with these new data structures will have an impact on data management tools, as "data will be structured in different ways, and people will be looking for new ways to mine data on a scale and complexity never done before," Rabe said. The development in data mining technology pushed by life sciences users will be applicable broadly, Rabe believes, in areas such as fraud detection. "Life sciences is doing earlier what many other industries are going to be doing down the road," he said.

Join us:






Answers - Powered by ITworld

ITworld Answers helps you solve problems and share expertise. Ask a question or take a crack at answering the new questions below.

Ask a Question