Fiber Bragg gratings on the fast track

By Peter Heywood, Network World |  Networking

Southampton Photonics this month announced new developments in fiber Bragg gratings -- devices used to split and recombine light in dense wave division multiplexing systems.

On the face of it, the big news is that Southampton Photonics has shipped the first commercial FBGs with 25-GHz channel separation. This means vendors' DWDM gear will be able to handle 160 wavelengths per channel, which means vendors may be able to honor promises to their customers.

However, the real significance of the announcement might not be in the FBGs themselves but in the way in which they were made. Southampton Photonics has automated the process of setting up the production equipment to make its FBGs to particular customer requirements, shrinking the time required to do this from an average of six to eight weeks to a mere 24 hours.

The company has also automated the manufacturing process, enabling each production line to churn out as many as 5,000 FBGs a month. That’s an average of an FBG every nine minutes, assuming 100% yields -- a figure that’s "impressive," if a little hard to believe, according to Tom Mock, director of product management at Ciena Corp. Ciena makes FBGs for use in its own equipment and has already announced 25-GHz and 12.5-GHz channel spacing.

Automating component manufacturing is good news for end users, since that typically translates into a more reliable and cheaper supply of components. Reducing costs on the component side will likely drive down system costs, which may help reduce end user costs.

Southampton Photonics already has two production lines and plans to build a third one -- facilitating production of 15,000 FBGs a month. This prompts more raised eyebrows. "That’s a very big number," Mock says. Victor Mizrahi, Ciena’s former chief scientist, doubts whether there’s demand for that quantity of FBGs.

Ciena and Southampton Photonics appear to make FBGs in similar ways and reap similar benefits. Both outfits avoid the need to design and make special phase masks for placing over lengths of doped fiber before blasting it with ultraviolet light to create gratings (barcode-like patterns of stripes) -- the way most other vendors make FBGs. Instead, Ciena and Southampton Photonics have developed computer programs that are able to make gratings from a set of standard phase masks.

Eliminating the purpose-designed phase mask avoids lengthy manufacturing delays. It also enables engineers to make longer, more complex gratings that can isolate wavelengths more cleanly than is possible with other processes. This equates to being able to reduce the spacing between wavelengths.

Join us:
Facebook

Twitter

Pinterest

Tumblr

LinkedIn

Google+

Answers - Powered by ITworld

ITworld Answers helps you solve problems and share expertise. Ask a question or take a crack at answering the new questions below.

Join us:
Facebook

Twitter

Pinterest

Tumblr

LinkedIn

Google+

Ask a Question