Stop in the name of light!

It’s often said that genuine optical routers won’t arrive until there’s been a fundamental breakthrough in physics -- until someone has figured out a way of buffering light so that packets can be stored and forwarded the way they are in today’s electronic routers.

Well, it looks as though we've got that fundamental breakthrough. In fact, two independent groups of scientists claim to have managed to slow down and "stop" light -- and both groups published their findings last month.

The first paper, published on Jan. 25, in the journal " Nature, " describes how scientists from the Rowland Institute for Science in Cambridge, Mass., have arrested a pulse of light inside a gas of cold sodium atoms.

The second paper, published on Jan. 29, in the journal " Physical Review Letters " (PRL), gives results of a similar experiment conducted by scientists at the Harvard-Smithsonian Center for Astrophysics.

The fact that two independent outfits have come up with similar results is significant. While the process of peer review in scientific journals weeds out most of the crackpots, there have been a few instances -- like cold fusion -- where work has proved impossible to reproduce, and thus of no practical use. This appears unlikely to happen with this research.

The key difference between the two experiments was the material used. Scientists at the Rowland's Institute employed a gas of cold sodium atoms, while the researchers at the Harvard-Smithsonian worked with a glass cell containing rubidium, which they heat up to create rubidium vapor.

In both cases, the atoms in the gas normally absorb light -- in other words, the gas is opaque. It can be made transparent (nonabsorbing) to a particular wavelength by illuminating it with a so-called coupling laser. If the coupling laser gets turned off as a pulse is passing through the gas cloud, the pulse "stops." Turn the coupling laser back on, and the pulse continues on its journey. If information is encoded on the pulse, it can be recovered later, just like a letter delayed in the mail.

The idea of stopping light is one that would curl Einstein's hair. The trick is that the light in the pulse isn’t actually stopped at all. Instead, the information in the pulse has been transferred to the surrounding gas atoms, while the energy it contains passes into the coupling beam. The information stays trapped in the atoms until they get a kick of energy from the coupling laser being turned back on. Then -- kapow! -- the pulse springs back to life.

Of course, there's a lot of work to be done before it will be possible to engineer this technology into something practical. "This technology could be 10 years from application, it could be 50," says David Phillips, lead author on the PRL paper.

What could it all mean to end users? Being able to " buffer " light will actually make true optical routing possible. This could mean a reduction in network complexity, which could result in cost savings. Converting traffic from optical to electrical and back to optical is much less elegant than routing traffic optically. It also means that traffic will be able to be switched much faster than ever before with more even more capacity.

Phillips adds, "There are still a bunch of physics issues to understand before you start engineering it into a box." Experiments that take place at very low temperatures -- like the work at Harvard-Smithsonian -- are useful in this respect because they are a lot easier to understand from a physics perspective."

Pretty soon, it should be possible to store light in solid materials, as well as in gases. "For real applications, solid state is where you'll think about doing things," notes Phillips. In fact, he believes that researchers are already submitting proposals to do these experiments -- storing light -- inside doped optical fiber.

This story, "Stop in the name of light! " was originally published by NetworkWorld.

Insider: How the basic tech behind the Internet works
Join the discussion
Be the first to comment on this article. Our Commenting Policies