After Stuxnet: The new rules of cyberwar

Critical infrastructure providers face a rising tide of increasingly sophisticated and potentially destructive attacks.

By , Computerworld |  Security, cyberwar, Stuxnet

Usually in espionage it's much easier to steal intelligence than it is to do physical harm. That's not true in the cyber domain, says Hayden. "If you penetrate a network for espionage purposes, you've already got everything you'll want for destruction," he says.

On the other hand, while it's impossible for a private company to defend itself from physical warfare, that's not true when it comes to cyberattacks. Every attack exploits a weakness. "By closing that vulnerability, you stop the teenage kid, the criminal and the cyberwarrior," says Pescatore.

Control Anxiety

Computerized control systems are a potential problem area because the same systems are in use across many different types of critical infrastructure. "Where you used to turn dials or throw a switch, all of that is done electronically now," Schmidt says.

In addition, many industrial control systems that used to be "air-gapped" from the Internet are now connected to corporate networks for business reasons. "We've seen spreadsheets with thousands of control system components that are directly connected to the Internet. Some of those components contain known vulnerabilities that are readily exploitable without much sophistication," says Marty Edwards, director of control systems security at the Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) at the DHS. The organization, with a staff that's grown tenfold to 400 in the past four years, offers control system security standards, shares threat data with critical infrastructure providers and has a rapid response team of "cyberninjas," high-level control systems engineers and cybersecurity analysts who can be deployed at a moment's notice.

Last year, ICS-CERT issued 5,200 alerts and advisories to private industry and government. "[Edwards] had teams fly out seven times last year to help businesses respond to events that either took them offline or severely impacted operations," says Weatherford, who declined to provide details on the nature of those events.

Control systems also suffer from another major weakness: They're usually relatively old and can't easily be patched. "A lot of them were never designed to operate in a network environment, and they aren't designed to take upgrades," Schmidt says. "Its firmware is soldered onto the device, and the only way to fix it is to replace it." Since the systems were designed to last 10 to 20 years, organizations need to build protections around them until they can be replaced. In other cases, updates can be made, but operators have to wait for the service providers who maintain the equipment to do the patching.

So where should the industry go from here?


Originally published on Computerworld |  Click here to read the original story.
Join us:
Facebook

Twitter

Pinterest

Tumblr

LinkedIn

Google+

Ask a Question
randomness