NASA-backed fusion rocket aims for human Mars mission

University of Washington researchers say rocket could power craft that carries astronauts to Mars in 30 days

By , Computerworld |  Hardware

The team has created a system in which a powerful magnetic field causes large metal rings to implode around the plasma, compressing it to a fusion state, to power the rocket. The converging rings merge to form a shell that ignites the fusion, but only for a few microseconds.

The fusion reactions quickly heat and ionize the shell. This super-heated, ionized metal is ejected out of the rocket nozzle at a high velocity, the university explained. This process is repeated every minute or so, propelling the spacecraft at high speeds.

"I think everybody was pleased to see confirmation of the principal mechanism that we're using to compress the plasma," Slough said. "We hope we can interest the world with the fact that fusion isn't always 40 years away and doesn't always cost $2 billion."

The university's rocket project is funded by NASA's Innovative Advanced Concepts Program.

Sharon Gaudin covers the Internet and Web 2.0, emerging technologies, and desktop and laptop chips for Computerworld. Follow Sharon on Twitter at @sgaudin, or subscribe to Sharon's RSS feed . Her e-mail address is sgaudin@computerworld.com.

Read more about emerging technologies in Computerworld's Emerging Technologies Topic Center.


Originally published on Computerworld |  Click here to read the original story.
Join us:
Facebook

Twitter

Pinterest

Tumblr

LinkedIn

Google+

Answers - Powered by ITworld

ITworld Answers helps you solve problems and share expertise. Ask a question or take a crack at answering the new questions below.

Join us:
Facebook

Twitter

Pinterest

Tumblr

LinkedIn

Google+

Ask a Question