Scientists find clues to why everything exists

CERN physicists get first hints on what happened to anti-matter

By , Computerworld |  Hardware

Scientists at the Large Hadron Collider say they are getting some clues about where all the anti-matter went.

That is a big deal because scientists have long been trying to figure out why anti-matter seemed to disappear.

The answer may lie in the fact that scientists at CERN, the European Organization for Nuclear Research, which runs the Large Hadron Collider, say matter and anti-matter may decay differently.

At the beginning of the universe, there was an equal number of particles and anti-particles -- matter and anti-matter. These particles had opposite electric charges

It's believed that when matter and anti-matter collided, they turned back into energy. But if there is still matter in the world, what happened to those matter-busting collisions? Shouldn't an equal number of both kinds of matter have cancelled each out, leaving nothing behind?

However, everything we see in the universe -- from tiny frogs to trees, buildings and stars -- are made of matter. And scientists say there is very little anti-matter around.

Something tipped the balance. What process left us with matter but not anti-matter?

Now CERN physicists say they have a lead on what that was: decay.

CERN reported that when scientists there smashed protons together inside the underground collider, they have been able to create conditions similar to the period soon after the Big Bang. That means they have seen some anti-matter particles.

CERN said they discovered a subatomic particle, dubbed BOs, which decays unevenly into matter and anti-matter. The anti-matter part decays faster than the matter.

It is only the fourth subatomic particle known to exhibit such behavior, scientists noted.

"By studying subtle differences in the behavior of particle and antiparticles, experiments at the [Large Hadron Collider] are seeking to cast light on this dominance of matter over antimatter," CERN reported on Wednesday. "The results are based on the analysis of data collected by the experiment in 2011."

It's been a big month in the physics world. Early in April, CERN reported that a $2 billion device attached to the outside of the International Space Station has found particles that could be the building blocks of dark matter.


Originally published on Computerworld |  Click here to read the original story.
Join us:
Facebook

Twitter

Pinterest

Tumblr

LinkedIn

Google+

Spotlight on ...
Online Training

    Upgrade your skills and earn higher pay

    Readers to share their best tips for maximizing training dollars and getting the most out self-directed learning. Here’s what they said.

     

    Learn more

Answers - Powered by ITworld

Ask a Question