5 more tech breakthroughs in access, power, control

By , Computerworld |  Networking, emerging technology

In other words, WiGig delivers true multi-gigabit throughput -- enough to transmit an entire HD movie in a matter of seconds or smoothly stream it to a viewer. It also offers enough bandwidth to satisfy households with several data-hungry users connected at once -- such as a young child playing an online game in the den, a parent downloading a video-heavy work presentation in the kitchen and a teenager video-chatting with her boyfriend in the dining room.

WiGig could also be used to connect computers to peripherals, such as HD monitors or network hard drives, without a cable in sight. The new wireless spec is also compatible with current Wi-Fi devices.

Enhancing WiGig's speed is a cool trick called beam-forming. Unlike most wireless data systems, WiGig's signal doesn't spread out in a sphere, with most of it wasted. WiGig is smart enough to adjust the antenna parameters at both the sender and receiver to create a focused beam of data for a direct link that has minimal interference. Beam-forming technology is already being used in some Wi-Fi products, but unlike other Wi-Fi standards, WiGig actually relies on it.

"Beam-forming technology is very cool," says David Seiler, chief of the Semiconductor Electronics Division at the Commerce Department's National Institute of Standards and Technology (NIST). "It's what makes high-speed wireless like WiGig possible, and it will be used in a lot of other areas." Because WiGig is based on the same 802.11 specs as Wi-Fi, this technique can "extend the usefulness of Wi-Fi by five to 10 years," he adds.

There is a downside, though: WiGig's top speed has a range of only 45 feet. This will be a problem for home users who want to, say, connect a TV in the bedroom with a router in the basement, or for a business that wants to connect all of the employees in a small office wirelessly.

Sadri mentions two different ways to overcome WiGig's range limitation, neither of which is perfect. One possibility is to set up personal area networks (PAN) for each room or section of a home or office. That way, each PAN segment could pass along the data to the segment in the next room or section, although latency would increase each time the signal is relayed.

The other approach is a little more old-fashioned and involves installing gigabit Ethernet cables as a backbone for several WiGig transmitters placed in strategic locations throughout the building -- a solution that's likely more feasible for small businesses than it would be for home users because it requires running cables behind walls.

And, of course, WiGig will require a new generation of Wi-Fi routers and receivers that use the 60GHz transmission band. Armed with tri-band radios, these devices will also be able to operate on the 2.4GHz and 5GHz bands for interoperability with today's Wi-Fi equipment.


Originally published on Computerworld |  Click here to read the original story.
Join us:
Facebook

Twitter

Pinterest

Tumblr

LinkedIn

Google+

Answers - Powered by ITworld

Join us:
Facebook

Twitter

Pinterest

Tumblr

LinkedIn

Google+

Ask a Question