5 more tech breakthroughs in access, power, control

By , Computerworld |  Networking, emerging technology

Despite losing to IBM's Watson computer on Jeopardy, the human brain remains the most powerful, flexible and complex information processor on Earth. But it has to interact with computers through our error-prone bodies. Click on the wrong icon or hit the wrong key and work can grind to a halt -- or worse, an afternoon of effort can be lost.

That's why scientists and other visionaries have long dreamed of interacting with computers through pure thought, using the brain to directly input, edit and manipulate ideas.

Like a scenario straight out of science fiction, using the brain as a computer interface is easily the weirdest and most speculative idea of the 10 breakthroughs we've covered in this two-part series. The reward is potentially huge, however. This capability could free us from the most inefficient part of the computing chain: the interface.

"It sounds crazy," says Dean Pomerleau, an Intel Labs researcher in Pittsburgh, "but you'd put on a cap that scans your brain and sit in front of your computer screen to check your calendar, reply to annoying emails and work on that big spreadsheet from work -- all without typing or moving a mouse."

Starting at the University of California, Los Angeles, in the 1970s, a long line of researchers around the world has experimented with brain-computer interfaces (BCI), first using animals and later humans as well. Many of these efforts have involved implanting electrodes inside the brain or on its surface. One problem with that approach is that scar tissue tends to develop around such implants and it interferes with the signal. Other projects have attached electrodes to the subject's scalp, but the skull can block or distort the brain's signals.

Despite these limitations, scientists continue to move BCIs forward. Pomerleau, for example, is working with researchers from the University of Pittsburgh and Carnegie Mellon University on a project known as NeuroSys.

For this group, efforts to turn thought into computing action began with observations of people's brains using a functional magnetic resonance imaging (fMRI) machine. Subjects were told to think about specific words like "search" or "dog," and the machine created an image of the neural activity, lighting up the areas of the brain that were creating the thought.

Working with many test subjects (English speakers only for now), the NeuroSys researchers started with nouns and moved on to verbs, amassing brain scans and noting similarities among them until clear patterns emerged. All this data has been incorporated into a computer program that can translate neural activity patterns to words.


Originally published on Computerworld |  Click here to read the original story.
Join us:
Facebook

Twitter

Pinterest

Tumblr

LinkedIn

Google+

Answers - Powered by ITworld

Join us:
Facebook

Twitter

Pinterest

Tumblr

LinkedIn

Google+

Ask a Question
randomness