Smart buildings get smarter

By , Computerworld |  IT Management, smart buildings

Existing buildings can also benefit from an IBMS, says Darrell Smith, operational supervisor at Microsoft's Real Estate and Facilities organization. The company's Energy Smart Buildings project, now under way in the 118 buildings that make up its Redmond, Wash., campus, uses an IBMS and analytics tools to optimize operational and energy efficiency across seven building management systems. The IBMS pulls data from those systems, which track HVAC, lighting, power monitoring meters, generators, power distribution units and circuit monitors. Because of the complexity, says Smith, partnering with IT was critical. "They looked at the protocols with us and how we were going to get the data out of these systems," he says.

Microsoft's campus has 2 million mechanical and electrical data points (the SFPUC building has 13,500) that generate 500 million data transactions, or data point updates, per day. "The business was doing nothing with that data," Smith says. Replacing those building systems, from power metering to lighting and HVAC, would have increased efficiency at a cost of $50 million to $60 million. Instead, the facilities group decided to extract the data from its existing systems and transfer it into a common SQL Server database, where the data could be analyzed and each building's operational performance could be assessed using key performance indicators, such as power demand per person and average demand per square foot, as well as a building performance indicator rating for each type of building (a lab or an office, for example). Microsoft generated operational dashboards for facilities staff, and it will soon offer plug-level usage data for its Sustainability Champion program, which will let employees see how their individual energy conservation efforts pay off.

Saving Energy

Sometimes Fingers Are Better Than Sensors

There are a number of high-tech tools that can help organizations save money and cut energy use by automating building controls, but sometimes the best option is a manual switch.

Consider the case of Union Hospital in Terre Haute, Ind. When officials wanted to save energy in operating rooms, the first thing they did was to stop relying on occupancy sensors to control the air conditioning.

That move might seem to be counterintuitive. Operating rooms require 15 or more air exchanges per hour when in use, and turning down the air conditioning when a room is unoccupied can save a lot of energy -- potentially cutting costs by as much as $10,000 annually per room. The problem was that hospital staffers move in and out of the surgical suites all the time, so the occupancy sensors, which worked fine for lighting, couldn't efficiently control the ventilation system.


Originally published on Computerworld |  Click here to read the original story.
Join us:
Facebook

Twitter

Pinterest

Tumblr

LinkedIn

Google+

IT ManagementWhite Papers & Webcasts

See more White Papers | Webcasts

Answers - Powered by ITworld

Join us:
Facebook

Twitter

Pinterest

Tumblr

LinkedIn

Google+

Ask a Question
randomness