How to use a Moneyball approach to build a better IT team

By Rich Hein, CIO |  IT Management

If you aren't familiar with the term, Moneyball, it originates with the Oakland A's general manager Billy Beane's (and his mentor Sandy Alderson). The Moneyball method helped Oakland build a playoff baseball team on a smaller budget by relying on statistical analysis to acquire new players. When it came to baseball talent, Oakland knew it could never financially go head to head with the biggest teams in major league baseball, so the team started using an unheard of method in baseball, the Sabermetric principles.

This research and analytics based approach helped the A's identify undervalued athletes in the competitive MLB talent pool (as well decide which high school and college players to draft). Using this method the A's were able to reach the playoffs three consecutive years. Catalyst IT is applying similar principles to the IT hiring process to help companies build a better team of IT professionals.

In 2001 Michael Rosenbaum, president and founder of Catalyst IT services began his journey with the goal of recruiting IT talent based on metrics rather than traditional hiring methods which include resumes, phone interviews and in-person interviews.

According to Rosenbaum, traditional hiring methods are biased and rely too heavily on the interviewer's perspective. "Resumes and interviews have never been a great way to figure out whether or not someone is going to be good in a job or role," says Rosenbaum. You wouldn't want to trust your company's bottom line to a hunch, so why would you hire people on your team that way?

Although Catalyst IT keeps the actual signals and data its uses confidential, Rosenbaum shares some insight into what he's learned from 10 years of using a Moneyball-like model for hiring IT workers and building Agile development teams.

Hiring Practices Meets Big Data

"This method enables us to look at performance metrics instead of simply credentials, which haven't really been able to predict whether someone will deliver," says Rosenbaum. The idea behind this Moneyball approach is to marry big data with the hiring process.

Using massive amounts of data across all the persons in their organization, Catalyst says it can predict with some certainty who will be the high performers on any given project. They use data-points such as how many functions/projects can a team complete in two-week window, how many can an individual complete in a two-week window, defect and rework rates, QA metrics, social networking data points, how they interact when applying online and more. "We are typically looking at a couple thousand data points," says Rosenbaum.


Originally published on CIO |  Click here to read the original story.
Join us:
Facebook

Twitter

Pinterest

Tumblr

LinkedIn

Google+

Answers - Powered by ITworld

Join us:
Facebook

Twitter

Pinterest

Tumblr

LinkedIn

Google+

Ask a Question