Materials research needed to make space elevator a reality

Scientists at an annual conference discuss the challenges of building an elevator to the stars

By , IDG News Service |  Tech & society, space exploration, Tech & society

While much of the first day of the Space Elevator Conference was dedicated to the problem of space trash, the concept also faces another significant challenge.

"We have one big problem -- everything else pales in comparison -- and that is materials," said Bryan Laubscher, president of Odysseus Technologies and a speaker at the annual conference in Redmond, Washington.

Scientists studying the possibility of building an elevator into space envision a ribbon made of carbon nanotubes stretching from the surface of the Earth up into geosynchronous orbit. Crafts, like elevator cars, could carry people and goods up the ribbon into space.

The problem is, it's not yet clear if strong enough nanotube ribbons can be made.

"Materials research of carbon nanotubes is dominated by people who are looking at electrical properties," Laubscher said. "That's the low-hanging fruit."

While that's important for the use of nanotubes in electronics, it has come at the expense of research into stronger carbon nanotubes, he said. Scientists who set out to build super-strong carbon nanotubes have given up in part due to lack of funding, he said.

The nanotube ribbon not only would have to stretch at least 22,000 miles (35,406 kilometers), it would also have to support an elevator car that might weigh 7 metric tons, plus a 13-ton payload, he said.

Space trash is another problem, since objects that collide with the ribbon could damage it. One proposal, presented at this year's conference, is to collect and remove trash from space using a giant net.

Another challenge is tying the elevator to a platform in the ocean that can be moved so the elevator can avoid collisions in space. That raises questions about how such a structure might react to being moved. No one knows exactly how the ribbon might oscillate when shifted at the base.

Scientists are researching space elevators as a way to dramatically decrease the cost of sending people and objects into space. It costs US$10,000 per kilogram to send a load into space using Delta and Atlas rockets, Laubscher said. A space elevator could transport loads at a cost of $3,000 per kg initially, with the cost quickly dropping to $300 per kg, he said.

He estimates that a space elevator will cost $1.5 billion in research and development and $18 billion to actually build. Subsequent elevators would cost less, with the second running around $7 billion.

If strong enough carbon nanotubes are developed, it could take around 15 years to build a space elevator.

Join us:
Facebook

Twitter

Pinterest

Tumblr

LinkedIn

Google+

Tech & societyWhite Papers & Webcasts

See more White Papers | Webcasts

Answers - Powered by ITworld

Join us:
Facebook

Twitter

Pinterest

Tumblr

LinkedIn

Google+

Ask a Question
randomness