What's lurking in your network? Find out by decrypting SSL

By Brian Heder, Network World |  Security, encryption, SSL

When you open the browser on your computer (or smartphone or tablet) and go to a secure website such as your bank, you notice the URL begins with HTTPS (notice the "S"). This indicates that all data being exchanged with the remote Web server is being encrypted by an encryption scheme called PKI (public key infrastructure). It works like this:

  • The Web server has a secret encryption key called a private key, which is just a long, seemingly random string of characters stored in a computer file. Only the Web server has access to the private key. It also has a public certificate (which is also just a computer file) that contains another encryption key, called the public key, that is different from the secret key.
  • The private key and the public key are mathematically related such that anything encrypted by the public key can only be decrypted by the private key. In other words, the encryption operation cannot be reversed using the public key. (Exactly how the mind-bending math works is beyond both the scope of this article and, frankly, my intelligence).

When your browser wants to communicate with an encrypted Web server, the following sequence of events occurs (depicted graphically in Figure 1 for those who like pictures).

Make sense? The key to understanding PKI encryption is the relationship between the public and private keys; the public key is used to encrypt, and the private key is used to decrypt. And since the only entity in the whole world that has access to the private key is the server, anything encrypted by the public key can only be decrypted by the Web server.

Now that we have a basic understanding of PKI, let's get back to the subject at hand. To decrypt traffic so your security tools can examine it we have to get in the middle of the session. How we do this depends on the function or type of traffic you are trying to decrypt. There are two categories:

Let's take a look at each of these and explore how to decrypt each.

Decrypting inbound traffic


Originally published on Network World |  Click here to read the original story.
Join us:
Facebook

Twitter

Pinterest

Tumblr

LinkedIn

Google+

Answers - Powered by ITworld

ITworld Answers helps you solve problems and share expertise. Ask a question or take a crack at answering the new questions below.

Join us:
Facebook

Twitter

Pinterest

Tumblr

LinkedIn

Google+

Ask a Question
randomness