Flexing NoSQL: MongoDB in review

MongoDB shines with broad programming language support, SQL-like queries, and out-of-the-box scaling

By Andrew Glover, InfoWorld |  Big Data, MongoDB, nosql

The NoSQL movement has spawned a slew of alternative data stores, all of which attempt to fill voids left by traditional relational database implementations. But while it's easy to fit the various relational databases (MySQL, Oracle, DB2, and so on) under a single categorical umbrella, the NoSQL world is much more diverse, and the NoSQL label is too general. NoSQL data stores such as MongoDB and Cassandra are so vastly different from each other that apples-to-apples comparisons are practically impossible. Thus, within the world of NoSQL, there are subcategories such as key-value stores, graph databases, and document-oriented stores.

Document-oriented stores, or document stores for short, aren't new to the world of computing. Industry graybeards will quickly recognize Lotus Notes as one of the first successful NoSQL document stores from the late '80s. Document stores encapsulate data into loosely defined documents, rather than tables with columns and rows. Implementations of the underlying document vary by data store, with some representing a document as XML and others as JSON, for instance.

[ Also on InfoWorld: NoSQL standouts: New databases for new applications | First look: Oracle NoSQL Database | Follow the latest developments in business technology news and get a digest of the key stories each day in the InfoWorld Daily newsletter. ]

But in general, documents aren't rigidly defined, and in fact they offer a high degree of flexibility when it comes to defining data. This flexibility has costs. For example, these data stores do not support SQL, instead supporting custom query languages better suited to the underlying document structure (such as XPath-like query languages for XML data stores). But the lack of rigidity in data definition has many benefits as well. In many cases, compared to traditional relational databases, the more flexible document stores enable faster iterative-style development where data requirements are evolving more rapidly than the pace of development.


Originally published on InfoWorld |  Click here to read the original story.
Join us:
Facebook

Twitter

Pinterest

Tumblr

LinkedIn

Google+

Big DataWhite Papers & Webcasts

See more White Papers | Webcasts

Answers - Powered by ITworld

ITworld Answers helps you solve problems and share expertise. Ask a question or take a crack at answering the new questions below.

Join us:
Facebook

Twitter

Pinterest

Tumblr

LinkedIn

Google+

Ask a Question
randomness