RAID Made Easy

Confused by the difference between RAID 0 and RAID 1+0? Our primer on the basics of data redundancy will help you sort it out

By Jon L. Jacobi, PC World |  Storage, RAID

What is RAID, why do you need it, and what are all those mode numbers that are constantly bandied about? RAID stands for "redundant array of independent disks," and you may or may not need it depending on your data-storage requirements.

The biggest gain from using RAID is protection against drive failure--which, according to Google and other experts, happens a lot more often than hard-drive manufacturers like to admit. (Note that the word array is included in the acronym, so saying "RAID array," as a lot of people do, is redundant. Clearly, storage folks have a strange sense of humor.)

In the old days, when the fastest and largest hard drives carried a very heavy premium (faster drives still do, though not nearly to the same degree), RAID was created to combine multiple, less-expensive drives into a single, higher-capacity and/or faster volume. Redundancy, also known as fault tolerance or failover protection, was included so that the loss of one drive wouldn't render an entire array and its data useless.

As such, RAID has several levels, or methods by which the drives are ganged together, with data distributed across the drives. The RAID levels are commonly referred to by number. The three most common levels in the consumer and small-office markets are RAID 0, RAID 1, and RAID 5, which I'll cover first along with other common options such as JBOD ("just a bunch of disks"), Microsoft's RAID-like Drive Extender, and RAID-virtualization technologies such as those from Drobo, Netgear, Synology, and Seagate.

Most RAID modes don't require that you employ drives of equal size, but they'll use only the capacity on each drive that equals the capacity of the smallest drive in the array--that is, if you mix a 500GB drive with a 1TB drive, the setup will treat both as 500GB drives.

Keep in mind that RAID's data redundancy is a hedge only against data loss due to drive failure, and a way to keep you working until you can replace the bad drive. RAID offers no protection against data lost to malware, theft, or natural disaster, and it's certainly no substitute for proper backup practices.

Common RAID Modes


Picture the 0 in "RAID 0" as a race track, and you're on to its primary purpose--speed. RAID 0 distributes data across multiple drives (for example, block A goes to/from drive 1, block B goes to/from drive 2), which permits the increased write and read speeds. This approach is sometimes referred to as striping, and other modes (as you'll see later) employ the technique as well.

Originally published on PC World |  Click here to read the original story.
Join us:






Ask a Question